مقایسه روشهای کلاسیک و هوش مصنوعی در پیش بینی شاخص قیمت سهام و طراحی مدل ترکیبی
Authors
abstract
امروزه، سرمایه گذاری در بورس، بخش مهمی از اقتصاد کشور را تشکیل می دهد. به همین دلیل پیش بینی قیمت سهام برای سهامداران از اهمیت خاصی برخوردار شده است تا بتوانند بالاترین بازده را از سرمایه گذاری خود کسب کنند. از سوی دیگر، شاخص قیمت سهام نشان¬دهنده وضعیت کلی بازار سهام است و می تواند به پیش بینی سهامداران جهت سرمایه گذاری کمک کند. اغلب در سالهای گذشته از روشهای کلاسیک برای پیش بینی قیمت سهام استفاده می کردند، اما با پیشرفت و توسعه مداوم روشهای فرا ابتکاری، شبکه¬های عصبی و شبکه¬های عصبی فازی، کاربردهای روزافزونی در مبحث پیش بینی شاخص قیمت سهام پیدا کرده اند. در این تحقیق، سه رویکرد مطرح می شود: 1) پیش بینی شاخص قیمت سهام با رویکرد روشهای کلاسیک؛ 2) رویکرد هوش مصنوعی؛ 3) رویکرد ترکیبی. به این منظور ابتدا ارزیابی عملکرد روشهای کلاسیک از قبیل روشهای هموارسازی نمایی، تحلیل روند، arima و هوش مصنوعی از قبیل شبکه های عصبی و شبکه های عصبی فازی انجام شده است، سپس سناریو سوم، یعنی طراحی مدل ترکیبی از arima ، شبکه های عصبی و شبکه های عصبی فازی مورد بررسی قرار گرفته است. نتایج تحقیق بیانگر آن است که توانایی مدل ترکیبی نسبت به تمامی روشهای هوش مصنوعی و کلاسیک بالاتر است.
similar resources
یکپارچه سازی تکنیک های هوش مصنوعی جهت ارائه مدل پیش بینی قیمت سهام
اوراق بهادار روش مطمئنی است برای جلب اعتماد عمومی جهت سرمایه گذاری درانواع اوراق بهادار با خطرهای متفاوت است و با این روش می توان سرمایه های کوچک و پراکنده را که به تنهایی نمی توانند مورد بهره برداری قرار گیرند جمع آوری نمود از آنها سرمایه هنگفتی جهت توسعه و پیشرفت اقتصادی فراهم آورد. در بورس های اوراق بهادار حساسیت های زیادی نسبت به روند قیمت وجود دارد این امر باعث گردیده تا تحولات مرتبط با چن...
full textمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
full textپیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی
پیشبینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیشبینی آن امری دشوار میباشد. از طرفی سریهای زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدلهای هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...
full textکاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام
مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...
full textمقایسه ی شبیه ها و روشهای مختلف پیش بینی ماهانه ی جریان مبتنی بر هوش مصنوعی
پیش بینی دقیق جریان در رود ها از اهمیت بسزایی در مدیریت منابع آبهای سطحی برخوردار می باشد؛ به همین دلیل، همواره تلاشهای زیادی برای طراحی و معرفی شبیه های دقیق پیش بینی صورت گرفته است. در تحقیق حاضر با استفاده از شبیه های خود همبسته ی میانگین متحرک با ورودیهای غیر تصادفی (ARMAX)، ANN و GP برای پیش بینی ماهانه ی جریان به دو روش پیش بینی زنجیره ی زمانی و پیش بینی ماهانه ی مجزای جریان رود سعید آباد...
full textارزیابی روشهای پیش بینی و ارائه مدل ترکیبی بهینه در خصوص پیش بینی درآمدهای مالیاتی
این مقاله به پیش بینی درآمدهای مالیاتی به تفکیک منابع وصولی (کل، اشخاص حقوقی، درآمد، ثروت و کالا و خدمات) برای سالهای 91-1390 می پردازد. به منظور دستیابی به پیش بینی های دقیق تر ابتدا ماهیت ساختاری سریهای زمانی مورد نظر از جهت خطی، غیرخطی و تصادفی بودن و میزان پیچیدگی سیستم مولد سریهای زمانی مالیاتی با استفاده از آزمون های نمای لیاپانوف و بعدهمبستگی بررسی شده است. نتایج حاصل از آزمون نمای لیاپا...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهش های مدیریت در ایرانPublisher: دانشگاه تربیت مدرس
ISSN 2322-X200
volume 10
issue شماره 4 پیاپی 49 2007
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023